Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.203
Filtrar
1.
Semin Perinatol ; 48(2): 151889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38565434

RESUMO

Patient-triggered modes of ventilation are currently the standard of practice in the care of term and preterm infants. Maintaining spontaneous breathing during mechanical ventilation promotes earlier weaning and possibly reduces ventilator-induced diaphragmatic dysfunction. A further development of assisted ventilation provides support in proportion to the respiratory effort and enables the patient to have full control of their ventilatory cycle. In this paper we will review the literature on two of these modes of ventilation: neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation (PAV), propose future studies and suggest clinical applications of these modes.


Assuntos
Suporte Ventilatório Interativo , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Respiração Artificial , Diafragma , Volume de Ventilação Pulmonar
2.
Crit Care ; 28(1): 124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627745

RESUMO

Extracorporeal Carbon Dioxide Removal (ECCO2R) is used in acute respiratory distress syndrome (ARDS) patients to facilitate lung-protective ventilatory strategies. Electrical Impedance Tomography (EIT) allows individual, non-invasive, real-time, bedside, radiation-free imaging of the lungs, providing global and regional dynamic lung analyses. To provide new insights for future ECCO2R research in ARDS, we propose a potential application of EIT to personalize End-Expiratory Pressure (PEEP) following each reduction in tidal volume (VT), as demonstrated in an illustrative case. A 72-year-old male with COVID-19 was admitted to the ICU for moderate ARDS. Monitoring with EIT was started to determine the optimal PEEP value (PEEPEIT), defined as the intersection of the collapse and overdistention curves, after each reduction in VT during ECCO2R. The identified PEEPEIT values were notably low (< 10 cmH2O). The decrease in VT associated with PEEPEIT levels resulted in improved lung compliance, reduced driving pressure and a more uniform ventilation pattern. Despite current Randomized Controlled Trials showing that ultra-protective ventilation with ECCO2R does not improve survival, the applicability of universal ultra-protective ventilation settings for all patients remains a subject of debate. Inappropriately set PEEP levels can lead to alveolar collapse or overdistension, potentially negating the benefits of VT reduction. EIT facilitates real-time monitoring of derecruitment associated with VT reduction, guiding physicians in determining the optimal PEEP value after each decrease in tidal volume. This original description of using EIT under ECCO2R to adjust PEEP at a level compromising between recruitability and overdistention could be a crucial element for future research on ECCO2R.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Masculino , Humanos , Idoso , Impedância Elétrica , Respiração com Pressão Positiva/métodos , Pulmão , Tomografia Computadorizada por Raios X , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Tomografia/métodos
3.
Respir Care ; 69(4): 449-462, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538014

RESUMO

BACKGROUND: In recent years, mechanical power (MP) has emerged as an important concept that can significantly impact outcomes from mechanical ventilation. Several individual components of ventilatory support such as tidal volume (VT), breathing frequency, and PEEP have been shown to contribute to the extent of MP delivered from a mechanical ventilator to patients in respiratory distress/failure. The aim of this study was to identify which common individual setting of mechanical ventilation is more efficient in maintaining safe and protective levels of MP using different modes of ventilation in simulated subjects with ARDS. METHODS: We used an interactive mathematical model of ventilator output during volume control ventilation (VCV) with either constant inspiratory flow (VCV-CF) or descending ramp inspiratory flow, as well as pressure control ventilation (PCV). MP values were determined for simulated subjects with mild, moderate, and severe ARDS; and whenever MP > 17 J/min, VT, breathing frequency, or PEEP was manipulated independently to bring back MP to ≤ 17 J/min. Finally, the optimum VT-breathing frequency combinations for MP = 17 J/min were determined with all 3 modes of ventilation. RESULTS: VCV-CF always resulted in the lowest MPs while PCV resulted in highest MPs. Reductions in VT were the most efficient for maintaining safer and protective MP. At targeted MPs of 17 J/min and maximized minute ventilation, the optimum VT-breathing frequency combinations were 250-350 mL for VT and 32-35 breaths/min for breathing frequency in mild ARDS, 200-350 mL for VT and 34-40 breaths/min for breathing frequency in moderate ARDS, and 200-300 mL for VT and 37-45 breaths/min for breathing frequency for severe ARDS. CONCLUSIONS: VCV-CF resulted in the lowest MP. VT was the most efficient for maintaining safe and protective MP in a mathematical simulation of subjects with ARDS. In the context of maintaining low and safe MPs, ventilatory strategies with lower-than-normal VT and higher-than-normal breathing frequency will need to be implemented in patients with ARDS.


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial/métodos , Ventiladores Mecânicos , Pulmão , Volume de Ventilação Pulmonar , Síndrome do Desconforto Respiratório/terapia
4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 286-292, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38538358

RESUMO

OBJECTIVE: To investigate the effect of early pulmonary rehabilitation (PR) training on the improvement of respiratory function in patients with acute respiratory distress syndrome (ARDS) after weaning of invasive mechanical ventilation in the intensive care unit (ICU). METHODS: The retrospective cohort research method was used. The clinical information of adult patients with ARDS receiving invasive mechanical ventilation admitted to the ICU of Qingdao Municipal Hospital from January 2019 to March 2023 was collected. The patients were divided into a control group and an observation group according to off-line training program. The control group received traditional training after weaning, and the observation group received the early PR training after weaning. Other treatments and nursing were implemented according to the routine of the ICU. The scores of the short physical performance battery (SPPB) on day 3-day 6 of the weaning training, respiratory muscle strength, level of interleukin-6 (IL-6), number of aspirations of sputum after weaning, length of stay after weaning, rehospitalization rate within 6 months after discharge, and pulmonary function indicators at discharge and 3 months after discharge [peak expiratory flow (PEF), forced expiratory volume in one second/forced vital capacity ratio (FEV1/FVC), and vital capacity (VC)] of the two groups of patients were compared. The Kaplan-Meier survival curve was drawn to analyze the cumulative survival rate of patients 6 months after discharge. RESULTS: A total of 50 of which 25 cases received the traditional training after weaning, 25 cases received the early PR training after weaning. There was no significant difference in gender, age, acute physiology and chronic health evaluation II (APACHE II), oxygenation index upon admission, etiological diagnosis of ARDS upon admission, time of invasive ventilation, mode of invasive mechanical ventilation, pulmonary function indicators at discharge, and other baseline data of the two groups. The SPPB questionnaire scores and respiratory muscle strength in both groups were increased gradually with the extended offline training time, the serum level of IL-6 in both groups were descend gradually with the extended offline training time, especially in the observation group [SPPB questionnaire score in the observation group were 7.81±0.33, 8.72±0.53, 9.44±0.31, 10.57±0.50, while in the control group were 7.74±0.68, 8.73±0.37, 8.72±0.40, 9.33±0.26, effect of time: F = 192.532, P = 0.000, effect of intervention: F = 88.561, P = 0.000, interaction effect between intervention and time: F = 24.724, P = 0.000; respiratory muscle strength (mmHg, 1 mmHg≈0.133 kPa) in the observation group were 123.20±24.84, 137.00±26.47, 149.00±24.70, 155.40±29.37, while in the control group were 129.00±20.34, 126.00±24.01, 132.20±25.15, 138.60±36.67, effect of time: F = 5.926, P = 0.001, effect of intervention: F = 5.248, P = 0.031, interaction effect between intervention and time: F = 3.033, P = 0.043; serum level of IL-6 in the observation group were 80.05±6.81, 74.76±9.33, 63.66±10.19, 56.95±4.72, while in the control group were 80.18±7.21, 77.23±9.78, 71.79±10.40, 66.51±6.49, effect of time: F = 53.485, P = 0.000, effect of intervention: F = 22.942, P = 0.000, interaction effect between intervention and time: F = 3.266, P = 0.026]. Compared with the control group, the number of aspirations of sputum after weaning of patients in the observation group significantly decreased (number: 22.46±1.76 vs. 27.31±0.90), the length of ICU stay after weaning significantly became shorter (days: 6.93±0.95 vs. 8.52±2.21), and the rehospitalization rate within 6 months after discharge significantly decreased [20.00% (5/25) vs. 48.00% (12/25)]. There were significant differences. The pulmonary function indicators 3 months after discharge of two groups of patients significantly increased compared with those at discharge and those of the observation group were significantly higher than those of the control group [PEF (L/min): 430.20±95.18 vs. 370.00±108.44, FEV1/FVC ratio: 0.88±0.04 vs. 0.82±0.05, VC (L): 3.22±0.72 vs. 2.74±0.37, all P < 0.05]. The Kaplan-Meier survival curve showed that the cumulative survival rate of patients 6 months after discharge of patients in the observation group was significantly higher than that of patients in the control group [76.9% vs. 45.5%, hazard ratio (HR) = 0.344, P = 0.017]. CONCLUSIONS: Early PR training can significantly improve the respiratory function of patients with ARDS after weaning of invasive mechanical ventilation. Continuous active respiratory training after discharge can improve the respiratory function of patients and effectively decrease mortality.


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Adulto , Humanos , Respiração Artificial/métodos , Estudos Retrospectivos , Interleucina-6 , Desmame do Respirador , Síndrome do Desconforto Respiratório/terapia , Prognóstico , Volume de Ventilação Pulmonar , Unidades de Terapia Intensiva
5.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 260-265, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38538354

RESUMO

OBJECTIVE: To investigate the clinical effect of helium-oxygen mechanical ventilation on inflammation of the diseased lung segment and diaphragm function in patients with acute respiratory distress syndrome (ARDS) caused by pneumonia who suffered difficulty weaning from mechanical ventilation. METHODS: A prospective controlled study was conducted. A total of 40 patients with ARDS caused by pneumonia and requiring tracheal intubation with difficulty weaning from mechanical ventilation, admitted to the department of critical care medicine in Pingtan Branch of Fujian Medical University Union Hospital from October 2020 to December 2021 were enrolled. Patients were divided into nitrogen oxygen ventilation group and helium-oxygen ventilation group according to random number table, with 20 cases in each group. The nitrogen oxygen ventilation group was given 60% nitrogen and 40% oxygen ventilation treatment, and the helium-oxygen ventilation group was given 60% helium and 40% oxygen ventilation treatment. Peak airway pressure (Ppeak), plateau airway pressure (Pplat), tidal volume (VT), minute ventilation volume (MV) and pulse oxygen saturation (SpO2) were collected at 0, 1, 2, 3 hours after ventilation treatment. At the same time, the concentrations of inflammatory factors interleukin-6 (IL-6) and C-reactive protein (CRP) in epithelial lining fluid in patients with diseased lung segments were measured before and after ventilation treatment for 3 hours, and the diaphragmatic excursion and the diaphragmatic thickening fraction were measured before and after ventilation treatment for 3 hours. RESULTS: There were no significant differences in gender, age, oxygenation index, serum CRP, serum procalcitonin (PCT), body temperature, serum creatinine (SCr), alanine aminotransferase (ALT), fasting blood glucose (FPG), hemoglobin (Hb), and basic heart and lung diseases between the two groups. Under the condition that VT and SpO2 are relatively unchanged, the airway pressure in helium-oxygen ventilation group decreased significantly after 1 hour of ventilation [Ppeak (cmH2O, 1 cmH2O≈0.098 kPa): 22.80±4.47 vs. 28.00±5.07, Pplat (cmH2O): 19.15±3.90 vs. 23.20±3.81, both P < 0.05], and the airway pressure in the nitrogen oxygen ventilation group increased significantly after 1 hour [Ppeak (cmH2O): 22.35±2.13 vs. 19.75±1.94, Pplat (cmH2O): 18.50±1.70 vs. 16.50±1.88, both P < 0.05]. There were no significant differences in CRP and IL-6 levels in epithelial lining fluid in the diseased lung segment before and after ventilation in the nitrogen oxygen ventilation group, while the levels of these indexes in the helium-oxygen ventilation group after ventilation were significantly lower than those before ventilation, and significantly lower than those in the nitrogen oxygen ventilation group [CRP (mg/L): 10.15 (6.39, 15.84) vs. 16.10 (11.63, 18.66), IL-6 (µg/L): 1.15 (0.78, 1.86) vs. 2.67 (1.67, 4.85), both P < 0.05]. There were no statistically significant differences in the diaphragmatic excursion and the diaphragmatic thickening fraction before and after ventilation in the nitrogen oxygen ventilation group, while the above indexes in the helium-oxygen ventilation group were significantly higher than those before ventilation, and were significantly higher than those in the nitrogen oxygen ventilation group [diaphragmatic excursion (cm): 1.93 (1.69, 2.20) vs. 1.34 (1.22, 1.83), diaphragmatic thickening fraction: (48.22±8.61)% vs. (33.29±11.04)%, both P < 0.05]. CONCLUSIONS: Helium-oxygen ventilation can reduce the airway pressure of patients with mechanical ventilation, alleviate the inflammatory response of lung segment, improve the function of respiratory muscle, and is expected to be an important treatment for severe lung rehabilitation.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial , Hélio , Estudos Prospectivos , Diafragma , Interleucina-6 , Pulmão , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Oxigênio , Nitrogênio
6.
Semin Perinatol ; 48(2): 151886, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553330

RESUMO

Despite strong evidence of important benefits of volume-targeted ventilation, many high-risk extremely preterm infants continue to receive traditional pressure-controlled ventilation in the United States and elesewhere. Reluctance to abandon one's comfort zone, lack of suitable equipment and a lack of understanding of the subtleties of volume-targeted ventilation appear to contribute to the relatively slow uptake of volume-targeted ventilation. This review will underscore the benefits of using tidal volume as the primary control variable, to improve clinicians' understanding of the way volume-targeted ventilation interacts with the awake, breathing infant and to provide information about evidence-based tidal volume targets in various circmstances. Focus on underlying lung pathophysiology, individualized ventilator settings and tidal volume targets are essential to successful use of this approach thereby improving important clinical outcomes.


Assuntos
Pulmão , Respiração Artificial , Recém-Nascido , Humanos , Volume de Ventilação Pulmonar/fisiologia , Lactente Extremamente Prematuro
7.
Semin Perinatol ; 48(2): 151887, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38556386

RESUMO

High frequency ventilation (HFV) in neonates has been in use for over forty years. Some early HFV ventilators are no longer available, but high frequency oscillatory ventilation (HFOV) and jet ventilators (HFJV) continue to be commonly employed. Advanced HFOV models available outside of the United States are much quieter and easier to use, and are available as options on many conventional ventilators, providing important improvements such as tidal volume measurement and targeting. HFJV excels in treating air leak and non-homogenous lung disease and is often used for other diseases as well. High frequency non-invasive ventilation (hfNIV) is a novel application of HFV that remains under investigation. Similar to bubble CPAP, hfNIV has been applied with a variety of high-frequency ventilators. Efficacy and safety of hfNIV with any device have not yet been established. This article describes the current approaches to these HFV therapies and stresses the importance of understanding how each device works and what disease processes may respond best to the technology employed.


Assuntos
Ventilação de Alta Frequência , Ventilação não Invasiva , Recém-Nascido , Humanos , Respiração Artificial , Volume de Ventilação Pulmonar
8.
PLoS One ; 19(3): e0299919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512836

RESUMO

Wearing facepieces is discussed in the context of increasing the volume of rebreathed air. We hypothesized that rebreathed air volume increases with increasing filtering facepiece (FFP) class and that persons breathing via facepieces compensate for the additional dead-space. We have determined the effective amount of rebreathed air for a surgical masks and FFP2 and FFP3 respirators in a physical model and determined tidal volumes, breathing frequency, blood oxygen saturation, and transcutaneously measured blood carbon dioxide partial pressure (PCO2) in lung-healthy subjects breathing without and with facepieces at rest and during exercising on a recumbent ergometer. Rebreathed air volume increased with the facepieces' protection class and with increasing inspiration volume by 45 ± 2 ml to 247 ± 1 ml. Ambient airflow reduced rebreathed air volume by 17% up to 100% (all p < 0.001). When wearing facepieces, subjects increased tidal volume (p < 0.001) but not breathing frequency. Oxygen saturation was not influenced by facepieces. With FFP3 respirators PCO2 increased by up to 3.2 mmHg (p < 0.001) at rest but only up to 1.4 mmHg (p < 0.001) when exercising. Discomfort of breathing increased with increasing protection class of the facepiece but was consistently perceived as tolerable. We conclude that the amount of rebreathed air increases with increasing protection class of facepieces. Healthy adults were capable to compensate the facepieces' dead-space by adapting tidal volume at rest and during physical activity; thereby they tolerated moderate increases in PCO2. Ambient airflow may considerably reduce the amount of facepiece related rebreathed air.


Assuntos
Dispositivos de Proteção Respiratória , Adulto , Humanos , Respiração , Volume de Ventilação Pulmonar , Exercício Físico , Pulmão
9.
J Cardiovasc Electrophysiol ; 35(5): 975-983, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482937

RESUMO

INTRODUCTION: Lesion size index (LSI) was introduced with the use of Tacticath™ and as a surrogate of lesion quality. The metric used to achieve the predetermined values involves combined information of contact force (CF), power and radiofrequency time. Rapid atrial pacing (RAP) and high-frequency low-tidal volume ventilation (HFLTV) independently or in combination improve catheter stability and CF and quality of lesions. Data of the impact of body weight adjusted HFLTV ventilation strategy associated with RAP in the lesion metrics still lacking. The study aimed to compare the results of high-power short-duration (HPSD) atrial fibrillation ablation using simultaneous weight adjusted HFLTV and RAP and standard ventilation (SV) protocol. METHODS: Prospective, nonrandomized study with 136 patients undergoing de novo ablation divided into two groups; 70 in RAP (100 ppm) + HFLTV with 4 mL/kg of tidal volume and 25 breaths/min (group A) and 66 patients with SV in intrinsic sinus rhythm (group B). Ablation using 50 W, CF of 5-10 g/10-20 g and 40 mL/minute flow rate on the posterior and anterior left atrial wall, respectively. RESULTS: No procedure-related complications. Group A: Mean LSI points 70 ± 16.5, mean total lower LSI 3.4 ± 0.5, mean total higher LSI 8.2 ± 0.4 and mean total LSI 5.6 ± 0.6. Anterior and posterior wall mean total LSI was 6.0 ± 0.4 and 4.2 ± 0.3, respectively. Mean local impedance drop (LID) points were 118.8 ± 28.4, mean LID index (%) 12.9 ± 1.5, and mean LID < 12% points 55.9 ± 23.8. Anterior and posterior wall mean total LID index were 13.6 ± 2.0 and 11.9 ± 1.7, respectively. Recurrence in 11 (15.7%) patients. Group B: Mean LSI points 56 ± 2.7, mean total lower LSI 2.9 ± 0.7, mean total higher LSI 6.9 ± 0.9, and mean total LSI 4.8 ± 0.8. Anterior and posterior wall mean total LSI was 5.1 ± 0.3 and 3.5 ± 0.5, respectively. Mean LID points were 111.4 ± 21.5, mean LID index (%) 11.4 ± 1.2, and mean LID < 12% points 54.9 ± 25.2. Anterior and posterior wall mean total LID index were 11.8 ± 1.9 and 10.3 ± 1.7, respectively. Recurrence in 14 (21.2%) patients. Mean follow up was 15.2 ± 4.4 months. CONCLUSION: Weight adjusted HFLTV ventilation with RAP HPSD ablation produced lower recurrence rate and better LSI and LID parameters in comparison to SV and intrinsic sinus rhythm.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Volume de Ventilação Pulmonar , Humanos , Feminino , Projetos Piloto , Masculino , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Fibrilação Atrial/diagnóstico , Estudos Prospectivos , Pessoa de Meia-Idade , Idoso , Ablação por Cateter/efeitos adversos , Resultado do Tratamento , Fatores de Tempo , Frequência Cardíaca , Estimulação Cardíaca Artificial , Peso Corporal
10.
PLoS One ; 19(3): e0299252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470892

RESUMO

BACKGROUND: Pulmonary function testing by barometric whole-body plethysmography (BWBP) is a long-established and well-accepted, non-invasive investigative procedure in cats. HYPOTHESIS/OBJECTIVES: To evaluate, if different acclimatization times influence the measurement parameters of BWBP in healthy adult cats. ANIMALS: 48 healthy adult cats. METHODS: In the prospective observational study, healthy cats were placed in a measuring chamber and BWBP was performed over 30 minutes. Parameters obtained during the three measurement units of 10 minutes each (T1, T2 and T3) were compared. RESULTS: All measurement parameters except for tidal volume per body weight changed significantly (p<0.05) over the three time periods. From T1-T2, the parameters minute volume per body weight (p<0.001), peak inspiratory flow per body weight (p<0.001), peak expiratory flow per body weight (p = 0.002), pause (p = 0.03), enhanced pause (p = 0.03) and quotient of peak expiratory flow divided by expiratory flow at end expiratory volume plus 50% tidal volume (p = 0.03) changed significantly. From the time interval T2-T3, only respiratory rate (p = 0.02), inspiratory time (p = 0.02), expiratory time (p = 0.04), and relaxation time (p = 0.01) changed significantly. All measurement parameters except for tidal volume per body weight changed significantly (p<0.05) between T1 and T3. Age had a significant influence on all parameters except for peak expiratory flow per body weight and peak inspiratory flow per body weight. The parameters were not influenced by sex. CONCLUSION AND CLINICAL IMPORTANCE: All measurement parameters except tidal volume per body weight were significantly affected by acclimatization time. Controlling for age and sex, there was still a significant influence of acclimatization time on all parameters except for tidal volume per body weight. Standardization of the acclimatization time for future studies would be appropriate in order to maintain comparability.


Assuntos
Pletismografia , Gatos , Animais , Pletismografia Total/métodos , Pletismografia Total/veterinária , Testes de Função Respiratória/métodos , Volume de Ventilação Pulmonar , Peso Corporal
11.
Physiol Meas ; 45(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38422515

RESUMO

Objective. Data from two-plane electrical impedance tomography (EIT) can be reconstructed into various slices of functional lung images, allowing for more complete visualisation and assessment of lung physiology in health and disease. The aim of this study was to confirm the ability of 3D EIT to visualise normal lung anatomy and physiology at rest and during increased ventilation (represented by rebreathing).Approach. Two-plane EIT data, using two electrode planes 20 cm apart, were collected in 20 standing sedate horses at baseline (resting) conditions, and during rebreathing. EIT data were reconstructed into 3D EIT whereby tidal impedance variation (TIV), ventilated area, and right-left and ventral-dorsal centres of ventilation (CoVRLand CoVVD, respectively) were calculated in cranial, middle and caudal slices of lung, from data collected using the two planes of electrodes.Main results. There was a significant interaction of time and slice for TIV (p< 0.0001) with TIV increasing during rebreathing in both caudal and middle slices. The ratio of right to left ventilated area was higher in the cranial slice, in comparison to the caudal slice (p= 0.0002). There were significant effects of time and slice on CoVVDwhereby the cranial slice was more ventrally distributed than the caudal slice (p< 0.0009 for the interaction).Significance. The distribution of ventilation in the three slices corresponds with topographical anatomy of the equine lung. This study confirms that 3D EIT can accurately represent lung anatomy and changes in ventilation distribution during rebreathing in standing sedate horses.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Animais , Cavalos , Volume de Ventilação Pulmonar/fisiologia , Impedância Elétrica , Tomografia/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiologia
12.
Sci Rep ; 14(1): 3580, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347053

RESUMO

A bag-valve-mask (BVM) is a first aid tool that can easily and quickly provide positive-pressure ventilation in patients with breathing difficulties. The most important aspect of BVM bagging is how closely the mask adheres to the patient's face when the E-C technique is used. In particular, the greater the adhesion force at the apex of the mask, the greater the tidal volume. The purpose of this study was to investigate the effect of various weights applied to the mask's apex and the pinch strength needed to perform the E-C technique, on tidal volume. In this prospective simulation study, quasi-experimental and equivalent time-series designs were used. A total of 72 undergraduate paramedic student from three universities were recruited using convenience sampling. The tidal volumes according to the weights (0 g, 100 g, 200 g, 300 g) applied to the apical area of the mask, handgrip strength, and pinch strength (tip pinch strength, key pinch strength, and tripod pinch strength) were measured. A linear mixed model analysis was performed. Linear mixed model analyses showed that tidal volume was significantly higher at 200 g (B = 43.38, p = 0.022) and 300 g (B = 38.74, p = 0.017) than at 0 g. Tripod pinch strength (B = 12.88, p = 0.007) had a significant effect on mask adhesion for effective BVM ventilation. Adding weight to the apical area of the mask can help maintain the E-C technique and enable effective ventilation. Future studies are required to develop specific strategies to improve the ventilation skills, which can be an important first-aid activity.


Assuntos
Força da Mão , Força de Pinça , Humanos , Volume de Ventilação Pulmonar , Respiração Artificial/métodos , Respiração com Pressão Positiva , Manequins
13.
Medicine (Baltimore) ; 103(6): e37227, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335373

RESUMO

BACKGROUND: To compare pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), and pressure-controlled ventilation-volume guaranteed (PCV-VG) modes in patients undergoing spinal surgery in the prone position under general anesthesia. METHODS: The study included 78 patients aged 20 to 80 years, American Society of Anesthesiologists 1-2, scheduled for lumbar spinal surgery. Patients included in the study were randomly divided into 3 groups Group-VCV; Group-PCV; Group-PCV-VG. Standard anesthesia protocol was applied. In addition to routine monitoring, train of four and BIS monitoring were performed. All ventilation modes were set with a target tidal volume of 6 to 8 mL/kg, FiO2: 0.40-0.45 and a respiratory rate of normocarbia. Positive end-expiratory pressure: 5 cm H2O, inspiration/expiration ratio = 1:2, and the maximum airway pressure:40 cm H2O. Hemodynamic, respiratory variables and arterial blood gases was measured, 15 minutes after induction of anesthesia in the supine position (T1), after prone position 15 minutes (T2), 30 minutes (T3), 45 minutes (T4), 60 minutes (T5), 75 minutes (T6), 90 minutes (T7). RESULTS: There was no significant difference between the groups in patient characteristics. SAP, DAP, mean arterial pressure, and heart rate decreased after being placed in the prone position in all groups. Hemodynamic variables did not differ significantly between the groups. partial arterial oxygen pressure and arterial oxygen saturation levels in blood gas were found to be significantly higher in Group-PCV-VG compared to Group-PCV and Group-VCV in both the supine and prone positions. Ppeak and plateau airway pressure (Pplato) values increased and dynamic lung compliance (Cdyn) values decreased after placing the patients in the prone position in all groups. Lower Ppeak and Pplato values and higher Cdyn values were observed in both the supine and prone positions in the Group-PCV-VG group compared to the Group-PCV and Group-VCV groups. CONCLUSION: PCV-VG provides lower Ppeak and Pplato values, as well as better Cdyn, oxygenation values compared to PCV and VCV. So that PCV-VG may be an effective alternative mode of mechanical ventilation for patients in the prone position during lumbar spine surgery.


Assuntos
Deslocamento do Disco Intervertebral , Humanos , Decúbito Ventral , Deslocamento do Disco Intervertebral/cirurgia , Respiração Artificial/métodos , Respiração com Pressão Positiva , Volume de Ventilação Pulmonar/fisiologia
14.
BMC Anesthesiol ; 24(1): 59, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336616

RESUMO

BACKGROUND: This study assessed the impact of pressure-controlled ventilation (PCV) focusing on end-inspiratory flow rate on the incidence of postoperative pulmonary complications (PPCs) and inflammation levels in patients undergoing spinal surgery in the prone position. METHODS: A total of 187 patients who underwent posterior spinal surgery were enrolled and randomly divided into 3 groups: 61 in the volume-controlled ventilation (VCV) group (group V), 62 in the PCV-volume-guaranteed (VG) group (group P1), and 64 in the PCV-VG end-expiratory zero flow rate group (group P2). Indicators including tidal volume (VT), peak airway pressure (Ppeak), and dynamic lung compliance (Cdyn) were recorded. The Ppeak, Cdyn, PETCO2, and oxygenation index (PaO2/FiO2) after intubation (T0), after prone position (T1), 60 min after prone position (T2), and after supine position at the end of surgery (T3) of the three groups were collected. RESULTS: In the within-group comparison, compared with T0, Ppeak increased at T1 - 2 in groups V and P1 (P < 0.01), whereas it decreased at T1 - 3 in group P2 (P < 0.01). Cdyn decreased at T1 - 2 and PaO2/FiO2 increased at T1 - 3 in all three groups (P < 0.01), and PaO2/FiO2 increased at T1 - 3 (P < 0.01). Compared with group V, Ppeak decreased at T0 - 3 in group P1 (P < 0.01) and at T1 - 3 in group P2 (P < 0.01), while Cdyn increased at T0 - 3 in groups P1 and P2 (P < 0.01). Compared with group P1, Ppeak was elevated at T0 (P < 0.01) and decreased at T1 - 3 (P < 0.05), and Cdyn was elevated at T0 - 3 in group P2 (P < 0.01). The total incidence of PPCs in group P2 was lower than that in group V (P < 0.01). Compared with the preoperative period, serum interleukin 6 (IL-6) and C-reactive protein (CRP) levels were increased at 24 and 72 h after surgery in group V (P < 0.01), whereas that was increased at 24 h after surgery in group P1 and group P2 (P < 0.01). Compared with group V, serum IL-6 and CRP levels were reduced at 24 h after surgery in groups P1 and P2 (P < 0.01 or < 0.05). CONCLUSION: In patients undergoing spinal surgery in the prone position, PCV-VG targeting an end-inspiratory zero flow rate lowers the incidence of PPCs and inflammation levels.


Assuntos
Interleucina-6 , Síndrome do Desconforto Respiratório , Humanos , Decúbito Ventral , Respiração Artificial , Volume de Ventilação Pulmonar
15.
BMC Anesthesiol ; 24(1): 82, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413871

RESUMO

BACKGROUND: Inadequate intraoperative mechanical ventilation (MV) can lead to ventilator-induced lung injury and increased risk for postoperative pulmonary complications (PPCs). Mechanical power (MP) was shown to be a valuable indicator for MV outcomes in critical care patients. The aim of this study is to assess the association between intraoperative MP in low-risk surgical patients undergoing general anesthesia and PPCs. METHODS: Two-hundred eighteen low-risk surgical patients undergoing general anesthesia for elective surgery were included in the study. Intraoperative mechanical ventilatory support parameters were collected for all patients. Postoperatively, patients were followed throughout their hospital stay and up to seven days post discharge for the occurrence of any PPCs. RESULTS: Out of 218 patients, 35% exhibited PPCs. The average body mass index, tidal volume per ideal body weight, peak inspiratory pressure, and MP were significantly higher in the patients with PPCs than in the patients without PPCs (30.3 ± 8.1 kg/m2 vs. 26.8 ± 4.9 kg.m2, p < 0.001; 9.1 ± 1.9 ml/kg vs. 8.6 ± 1.4 ml/kg, p = 0.02; 20 ± 4.9 cmH2O vs. 18 ± 3.7 cmH2O, p = 0.001; 12.9 ± 4.5 J/min vs. 11.1 ± 3.7 J/min, p = 0.002). A multivariable regression analysis revealed MP as the sole significant predictor for the risk of postoperative pulmonary complications [OR 1.1 (95% CI 1.0-1.2, p = 0.036]. CONCLUSIONS: High intraoperative mechanical power is a risk factor for developing postoperative pulmonary complications. Furthermore, intraoperative mechanical power is superior to other traditional mechanical ventilation variables in identifying surgical patients who are at risk for developing postoperative pulmonary complications. CLINICAL TRIAL REGISTRATION: NCT03551899; 24/02/2017.


Assuntos
Assistência ao Convalescente , Alta do Paciente , Humanos , Estudos Prospectivos , Pulmão , Respiração Artificial/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Volume de Ventilação Pulmonar
16.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(1): 111-113, 2024 Jan 30.
Artigo em Chinês | MEDLINE | ID: mdl-38384229

RESUMO

Objective: To explore the effect of routine reusable pipeline and disposable pipeline on ventilator quality control results. Methods: 17 ventilators were randomly selected to conduct quality control using routine reusable pipeline and disposable pipeline respectively. Quality control data were recorded and then paired t-test method was used to analyze whether the difference between the two pipelines was significant or not. Results: There were no significant differences in respiratory rate, tidal volume and end airway pressure between the two types of pipes ( P>0.05). The airway peak pressure of routine reusable pipeline was significantly higher than disposable pipeline ( P<0.05), but the difference was very small, only about 0.2 mbar which would not affect the conclusion of quality control. Conclusion: Quality control of ventilator is not affected by routine reusable pipeline and disposable pipeline, which can be replaced by each other.


Assuntos
Equipamentos Descartáveis , Ventiladores Mecânicos , Volume de Ventilação Pulmonar
17.
Curr Opin Anaesthesiol ; 37(2): 184-191, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390864

RESUMO

PURPOSE OF REVIEW: The present review summarizes the current knowledge and the barriers encountered when implementing tailoring lung-protective ventilation strategies to individual patients based on advanced monitoring systems. RECENT FINDINGS: Lung-protective ventilation has become a pivotal component of perioperative care, aiming to enhance patient outcomes and reduce the incidence of postoperative pulmonary complications (PPCs). High-quality research has established the benefits of strategies such as low tidal volume ventilation and low driving pressures. Debate is still ongoing on the most suitable levels of positive end-expiratory pressure (PEEP) and the role of recruitment maneuvers. Adapting PEEP according to patient-specific factors offers potential benefits in maintaining ventilation distribution uniformity, especially in challenging scenarios like pneumoperitoneum and steep Trendelenburg positions. Advanced monitoring systems, which continuously assess patient responses and enable the fine-tuning of ventilation parameters, offer real-time data analytics to predict and prevent impending lung complications. However, their impact on postoperative outcomes, particularly PPCs, is an ongoing area of research. SUMMARY: Refining protective lung ventilation is crucial to provide patients with the best possible care during surgery, reduce the incidence of PPCs, and improve their overall surgical journey.


Assuntos
Cuidados Intraoperatórios , Pneumopatias , Humanos , Cuidados Intraoperatórios/métodos , Pulmão/cirurgia , Pneumopatias/etiologia , Pneumopatias/prevenção & controle , Respiração com Pressão Positiva/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar/fisiologia
18.
Med Eng Phys ; 124: 104099, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38418028

RESUMO

Spirometry is a lung function test involving deep inhalation and forceful deep exhalation. It is widely used to obtain objective information about airflow limitation and to diagnose lung diseases. In contrast, tidal spirometry is based on normal breathing and therefore much more convenient, but it is hardly used in medical care and its relation with conventional (forced) spirometry is largely unknown. Therefore, the objective of this work is to reveal the relation between tidal and forced spirometry. Employing the strong correspondence between the forced flow-volume curves and the Tiffeneau-Pinelli (TP) index, we present a method to obtain (a) the expected tidal flow-volume curve for a given TP-index, and (b) the expected TP-index for a given tidal curve. For patients with similar values of the TP-index, the tidal curves show a larger spread than the forced curves, but their average shape varies in a characteristic way with varying index. Therefore, just as with forced curves, the TP-index provides a useful objective ranking of the average of tidal curves: upon decreasing TP-index the expiratory flow rate changes in that its peak shifts towards smaller expiratory volumes, and its post-peak part becomes dented.


Assuntos
Expiração , Pulmão , Humanos , Espirometria , Volume de Ventilação Pulmonar
19.
PLoS One ; 19(2): e0297113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306331

RESUMO

BACKGROUND: Low-normal levels of arterial carbon dioxide (PaCO2) are recommended in the acute phase of traumatic brain injury (TBI) to optimize oxygen and CO2 tension, and to maintain cerebral perfusion. End-tidal CO2 (ETCO2) may be used as a surrogate for PaCO2 when arterial sampling is less readily available. ETCO2 may not be an adequate proxy to guide ventilation and the effects on concomitant injury, time, and the impact of ventilatory strategies on the PaCO2-ETCO2 gradient are not well understood. The primary objective of this study was to describe the correlation and agreement between PaCO2 and ETCO2 in intubated adult trauma patients with TBI. METHODS: This study was a retrospective analysis of prospectively-collected data of intubated adult major trauma patients with serious TBI, admitted to the East of England regional major trauma centre; 2015-2019. Linear regression and Welch's test were performed on each cohort to assess correlation between paired PaCO2 and ETCO2 at 24-hour epochs for 120 hours after admission. Bland-Altman plots were constructed at 24-hour epochs to assess the PaCO2-ETCO2 agreement. RESULTS: 695 patients were included, with 3812 paired PaCO2 and ETCO2 data points. The median PaCO2-ETCO2 gradient on admission was 0.8 [0.4-1.4] kPa, Bland Altman Bias of 0.96, upper (+2.93) and lower (-1.00), and correlation R2 0.149. The gradient was significantly greater in patients with TBI plus concomitant injury, compared to those with isolated TBI (0.9 [0.4-1.5] kPa vs. 0.7 [0.3-1.1] kPa, p<0.05). Across all groups the gradient reduced over time. Patients who died within 30 days had a larger gradient on admission compared to those who survived; 1.2 [0.7-1.9] kPa and 0.7 [0.3-1.2] kPa, p<0.005. CONCLUSIONS: Amongst adult patients with TBI, the PaCO2-ETCO2 gradient was greater than previously reported values, particularly early in the patient journey, and when associated with concomitant chest injury. An increased PaCO2-ETCO2 gradient on admission was associated with increased mortality.


Assuntos
Lesões Encefálicas Traumáticas , Dióxido de Carbono , Adulto , Humanos , Dióxido de Carbono/análise , Estudos Retrospectivos , Respiração , Respiração Artificial , Volume de Ventilação Pulmonar
20.
J Med Food ; 27(3): 275-278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377552

RESUMO

As caffeine consumption continues to increase, both positive and negative effects are becoming evident. Caffeine directly affects the cardiovascular system, including heart function and rate. Thus, understanding the current respiratory safety pharmacological responses is of utmost importance. To elucidate the respiratory safety pharmacological characteristics of caffeine, male Sprague-Dawley rats, aged 6 weeks, were intravenously administered doses of 0, 2, 6, and 20 mg/kg of caffeine. Respiratory rate, tidal volume, and minute volume were subsequently measured. In this study, we observed a significant increase in respiratory rate and minute volume, but a remarkable reduction in tidal volume following the intravenous administration of caffeine at doses exceeding 6 mg/kg. These changes were evident within the timeframe of 0.25 to 1.5 h. The data we have collected can serve as valuable foundational scientific information for future research on caffeine, encompassing absorption, distribution, metabolism, excretion, and pharmacological core-battery experiments.


Assuntos
Testes Respiratórios , Cafeína , Ratos , Animais , Masculino , Cafeína/farmacologia , Ratos Sprague-Dawley , Volume de Ventilação Pulmonar , Administração Intravenosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...